Properties of Ecosystems

- The <u>flow of energy</u> powers ecosystems.
- <u>Matter cycles</u> between the biotic and abiotic world.

Understanding Ecosystem Terms

Mean Residence Time

For a system in dynamic equilibrium:

Mean Residence Time $(\tau) = \text{stock} / \text{inflow or outflow}$

 $\tau =$ Average length of time a given atom or molecule spends in the system between entering and leaving.

Hydrologic Cycle (water)

Read pages 36 – 37 in textbook

TT 1 1						
· · · · · · · · · · · · · · · · · · ·	Hydrologic Cycle					
(wa	ater)					
Pools (units are 106 km ³)	0.0	13				
1370	29	9.5 0.1 9.6				

Humans Alter the Hydrologic Cycle

From 1973 to 1987 the Aral dropped from fourth to sixth among the world's largest lakes.

Carbon Cycle

Reciprocal Processes:

- Photosynthesis (P_s)-
- Cellular Respiration (R) -

Carbon Cycle Mean Residence Times

- Oceans ~ 422 years
- $\bullet \quad Atmosphere \sim \quad \ \ 3 \ years \ \ (\text{but atmospheric lifetime} > 100 \ years)$
- Land Plants ~ 4.6 years
- At current rates of fossil fuel use, our recoverable supplies will last about 700 years! (4000 Pg ÷ 6.4 Pg/yr = 625 yrs)

The Carbon Cycle is not Always in Balance

• In the present, inputs of CO₂ > outputs to the atmosphere because ...

Burning of fossil fuels.

Net destruction of terrestrial vegetation.

- Current imbalance results in rising atmospheric CO₂ concentrations.
- In the past, $P_s > R$ because ... Fossil fuel deposits formed. Oxygen accumulated in the atmosphere.

The Missing Carbon Sink

Net CO ₂ Sources		Net CO ₂ Sinks		
Fossil Fuel Emission Land Use Change	6.4 1.5	Atmospheric Increase Ocean uptake	3.2 2.2	
Total Net Sources	7.9	Total Net Sinks	5.4	

Units are Pg C/yı

Mother nature mitigates climate change to some extent. Fate of Anthropogenic CO₂ Emissions (2010) 9.1±0.5 PgC y⁻¹ 5.0±0.2 PgC y⁻¹ 5.0±0.2 PgC y⁻¹ 26% 1.0 PgC y⁻¹ 26% 1.2 Address to some 2.6±1.0 PgC y⁻¹ 26% 1.2 Address to some 2.6±1.0 PgC y⁻¹ 2.6±1.0 Pg

Summary of Carbon Cycle

- Largest active pool is the ocean.
- Pool on land (plant + soil) $\cong 3x$ amount in atmosphere
- $P_s \cong R_{total}$
- Soil respiration $\cong 10x$ fossil fuel emissions
- P_s removes 1/6 of the atmospheric pool of CO_2 each year.
- Concentration of CO₂ in the atmosphere is ca. 0.4% per year (ca. 3x10¹⁵ g C/yr)

The Nitrogen (N) Cycle

- Atmosphere is ca. 78 % N₂ but most is unavailable to living things because ...
- N is important because ...
- Microbial processes are important in the steps of the N cycle.

The nitrogen cycle has 5 basic steps

1) Nitrogen Fixation: $N_2 => NH_3$

Root Nodules on a Legume

		-

Heterocysts in Anabaena

Humans Fix Nitrogen Too!

 $4N_2 + 12 H_2 + catalyst ==> 8 NH_3$ at 500°C & several hundred atmospheres of pressure

- 2) <u>Ammonification</u>: organic $N => NH_3$
- 3) Nitrification: $NH_3 => NO_2^- => NO_3^-$

2-step process - each step by different bacteria.

Step 1: oxidation of ammonia (NH $_3$) to nitrite (NO $_2$ $^-$) by _____

Step 2: oxidation of nitrite (NO₂-) to nitrate (NO₃-) by _____

Both steps couple E-releasing oxidations to fixation of carbon - chemoautotrophs.

- 4) <u>Nitrogen Assimilation</u>: NH₃ => organic N NO₃ => organic N
- 5) <u>Denitrification</u>: NO_3^- or $NO_2^- => N_2$ or N_2O

Active N Pools

Atmosphere 3,800,000 x 10¹⁵ g N
 Ocean 21,000 x 10¹⁵ g N
 Soil Organic Matter 95 x 10¹⁵ g N
 Terrestrial Biota 3.5 x 10¹⁵ g N

Terrestrial Ecosystems Can be Overfertilized

Potential Consequences of N Saturation

- Increased surface-water NO₃ concentrations.
- Enhanced losses of nutrient cations.
- Soil acidification & greater soluble Al.

Summary of N Cycle

- Largest active pool = N₂ in atmosphere which is 181x > amount in ocean
- N in soil organic matter is 27x > amount in terrestrial biota
- Largest flux = uptake by plants of which almost all is from recycled organic N
- Human activities ≈ 60 % of total inputs to land
- River flow $\approx 20\%$ total inputs to oceans

The Phosphorus (P) Cycle

- Example of a <u>sedimentary cycle</u> => no gaseous phase
- P is abundant in soil but in forms that are not readily available to biota
- PO₄-3 is an available form of P
- P is important because ...

Guano Islands

Mining guano ca. 1860.

The Global P Cycle

Summary of P Cycle

- Abundant but low availability.
- Weathering of P-rich rock is original source
- Geologic processes are slow (millions of years) so biota rapidly recycle organic-P.
- Residence time in biota is only a few days in the ocean.

Summary of P Cycle

- Large loss to ocean relative to rate of return to land.
- Losses in runoff are 90% particulate-P
- Mycorrhizae absorption by plant roots
- Mining P-rich rocks is a major source to land.

Aquatic Ecosystems Can be Overfertilized P added P not added Waterproof barrier

•			
•			
•			
•			
•			
,			
•			
•			
•			
,			

Emerging Trends May Cause the return of Eutrophication to Lake Erie Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions Fig. 1. MOST consistent with a separate to the first one separate to the first one of separate to the first one of separate to the s

Eutrophication in Coastal Waters Creates "Dead Zones" Mid-Summer 2007 Mid-Summer 2007 GULF OF MEXICO NETWORK STREET Read pages 556-558 in textbook

Spreading Dead Zones and Consequences for Marine Ecosystems Robert 1, Char² and Rupper Roundern² The dead sense is the caudal recens the sense of exponentially since in 111-101, and have service in the control of the control